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ABSTRACT

The Nevanlinna choracteristic of the derivative of
a meromorphic funetion quasi-bounded in the unit circle
is studied, and also a contribution is made towards the
elucidation of the comparison of the characteristic of
an entire function with its maximum modulus. Solutions
are given to two of the problems raised by members of the
Colloquium on Classical Function Theory at Cornell
University, 1961, Finally proofs are given of a theorem
on lacunary Fourier series, improving a result due to
Tomié, and of a theorem on rearrangement of series,

rclated to a result due to Agnew.

PUBLICATIONS

Arising out of the work done under the grant, the
following articles have been accepted for publications

"A problem on bounded analytic functions"
by P. B. Kennedy (Proc., Amer, Math. 80¢.);

"Note on Fourier series with Hadamard gaps"
by P. B. Kennedy (Journal London Math. Soc.);

and the following articlc has been submitted for

publications

"On the derivative of a quasi=bounded function"
by P. B. Kennedy (Quart. J. Kath. Oxford).




CIAPTIR  CYVE

§ 1.1. Let f(z) be meromorphic for |z} < 1, and for

0<r< ldefine 2m
_ eyl ( + lay!
mryf) = (207§ o \t(re*®)da,
0
r
"(r,f) = ( (n(t,f) - n(0,f)) dt/t + n(0,f) log r,
0

where n(t,T) is the nurber of poles of f in (z',é't, each
pole counted a number of times equal to its multiplieity.
The function

T(r,f) = m(r,f) + F(r,f)

is called the l'evanlinna characteristic of f. Our object

et 2

is to discuss the rate of growth of T(r,f') subject to
the restriction
T(r,f) = 0(1) as r tends to 1. (1.1.1)

Functions f satisfying (1.1.1) are called quasi-
bounded. Zvery bounded regular function is quasi-bounded,
but of course the converse is false in general: in fact
(bibl, 7, page 133) f is quasi-bounded if, and only if,
£ _is the guotient of two bounded regular functions.
The question, whether the derivative of a quasi-bounded
function is itself quasi-bounded, was raised by
Fevanlinna (bibl. O, page 138), who attributed it to
Bloch. lany functions are now known which answer this
question in the negative| even for bounded regular f).
The earliest example is due to Frostman (bibl. Y4; for
other examples see 7, 11), If f is pounded (and so

regular), it is elementary that

£'(z) = 0(1)/(L - |z|),
so that
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T(r,f') = m(r,f*') < =1log (1 ~r) + 0(1);
and I have shown (bibl, 7, Theorem IV) that, if A(r) tends
to infinity as r tends to 1, then there is a bounded
regular f such that
T(r,f') > =1log (1L -r) = B(r) (1.1.2)
on a gequence of r tending to l. Questions which now arise
naturally are: does (l.l.1) imply
T(r,f') + log (1 = r) —» =« 00? (1.1.3)
and if so, then, given g(r) tending to infinity as r tends
to 1, can (1,1.2) hold for some quasi-bounded f and all
sufficiently small 1 - r ? A question closely related to
the second of these is the following, proposed by
members of the Colloquium on Classical Manction Theory
at Cornell University, 1961 (bibl. 3, problem 5)3
"Is there a bounded analytic function defined in
tz{ < 1 such that
N(r,1/f')/(-1log(l-r)) =—> lasr—> 17? (1.1.4)

Can such an example be constructed as a gap series
N My
Z Cx 2 s Z.jck‘ < oo?"

In this chapter I answer these and some similer

questions.

§ 1.2, In fact (1.1.1) does imply (1l.1.3). This is
a consequence of Theorem I, proved below; but it seems of
interest to give first a proof involving the use of
Fatou's theorsm, If a is real denote by S(a) the "Stolz
region" which is the part of |z| < 1 where
|arg (1 - ze 3| & TN

We then have the following well~-known form of Fatou's

theorem.,
LEM.A 1. Let w(z) be regulor and bounded in jz) < 1.
Then 1im w(z) exists for almost all a, a3 .z tends to ela

in S(a); and for fixed o the conv
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respect to arg z as z tends to o * in S(a).
We deduce

LEMMA 2. With the hypothesis of Lepms ],

(1 = 1) wiirel®

toends to O bounde or slmost Qe

To prove Lemma 2, fix any o such that L(a), the limit
of w(z) as z tends to eiCL in S(a), exists. It is plain
that there is nn absolu*e constant o > O such that, as
soon as r > %, S(a) contains the closed disc with centre relc
. and radius 3(1 ~ r)., Let ¢ > O be given; then we may
choose r_ > 3} so that fw(z) - L(a)} < € for all z
satisfying

lz - rel® < 5(1 - 1), ro < r<l.

Hence for r_ < r < 1, by Cauchy's inequality for w'(z),

ot (ret®] = J(a/dz) (w(z)-L(a)) € e/(5(1-r)).

z=rel®

Because d > O is an absolute constant and € > 0 is

arbitrary, it follows that wi(rel®) = o(1)/(1 - r);

and this is true for almost all a because L(a) exists
for almost all a by Lemma 1. Moreover since w is bounded
we have w'(rel®) = 0(1)/(1 - r) uniformly with respect
to a. This proves Lemma 2,

We note also the following inequality (bibl. 1l,
page 207, footnote).

LiikA 3. Let a(x) be a positive function integrable
gver (a,b). Then

b b

-1 p -1 {
- f 1ogum ax ¢ tog{ ()| um ax].
a

a
Suppose now that f is quasi-bounded, so that
f = g/h, where g and h are bounded in |zj < 1. Since
£1 = (g'h - gn')/b>, (1.2.1)
we have easily
£ £ Gl o+ ') Gel + fhi)/(h

and so, because g/h2 and 1/h are quasi-bounded,

2
Iy
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\\ L
m(r,ft) < (277) S log (1+[g'(rel®)| +|n' (rel®)] ) da
o
+ 0(1),
Hence by Lemma 3 there is a constant A such that
27
exp m(r,f') < A‘S (1 + |g'(relt®)] + |h'(rei°ﬂ ) da.
’ 0
By Lemma 2 and the theorem of bounded convergence (bibl. 12,
page 337) the integral on the right is o(1)/(1 - r),
and so m(r,f') + log (l-r) tends to - oo. But by
(1.,1.1) and (1.2,1),
N(r,£') £ 2N(r,f) £ 2(r,f) = 0(1),
and so T(r,f') < m(r,f') + 0(1), This proves (1,1.3).

§ 1.3. Although it seemed worthwhile to present the
argument of § 1.2, there is in fact a simpler and yet
stronger argument,

THEOREM I. Let f be guasi-bounded in |z| < 1. Then

1

5 (1 = r) exp 2T(r,f') dr < . (1.3.,1)
(o]

Proof. As before, f = g/h where g and h are bounded
regular functions. By (1.2.1)
l£) € (Clet+thl)/In?l ) max (fg'f, In'),

and so

012 < Qe % w1 Qe +mp2imts

4

Since g2/hu, g/h3 and l/h2 are quasi-bounded, it
follows that 2T(r,f!') < 2m(r,f') + 0(1)
i

27

- 2

<@m™ ?{ log (1 +lg'(rel®) +In'(re!®)?) da
o]

+ 0(),

Employing Lemma 3 again we find that there are
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constants A, A' such that
2

exp 2T(r,f*) < A —; (1+lg'(rei“)|2“*‘h'(r91“)|2) da -
°

o9
=A%1-+Z;£q%ﬂ+wfhr%¢)

where g, hn are respectively the nth Taylor coefficients
of gy hat 2z =0, If we now multiply by 1 - r and
integrate from 0 to 1 we get (l.3.1), since

Z‘gng" < o, Z‘hng‘ < ©

because g and h are bounded. This proves Theorem I.
From Theorem I we deduce (l.1.3) as an eusy
corollary., In fact, let ¢ > O be given; then for all

small enough 1 = r, from (1.3,1) and the fact that T

increases with r (bibl. 8, page 7), we get

1(1+r)
e > y (1 - £) exp 2T(t,f') at
“r

2
> (L/4) (1 = r) exp 2T(r,f'),
and (1.,1.3) follows at once from this.

§ 1.4, It is plain from Theorem I that, for an
arbitrary p(r) t~nding to infinity, we cani~" have (1.1.2)
for some quasi-bounded f and all small enoug 1 -~ rs for
example, if p(r) = * log (= log (1-r)), ther (l1.1.2)

(for all sufficiently small 1 - r) would cun."udict
(1.3.1). Our object now is to show that Theorem 1 is,
in fact, in a sense best~-possible.

THEOREW II. Let B(r) be pogitive and incriunsing
in (0,1), and satisfy

(1 - r) exp B(r) decrcases as r increases, (1.4,1)

B(r') - B(r") —> oo as (1-r")/(l-r") —» 0,(1.4.2)
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1
f (1 - r) exp 2B(!‘) dI‘ < 00 . (1‘)4'»3)
o
Zhen there exists = function f, regular and quasi-

bounded in §z| < 1, such that
T(r,f') = m(r,f') > B(r) (Lohay)
for all sufficiently small 1 - r,

The class of functions B considered is fairly wides
we note, for example, that (1,..1) and (1.,4.2) are
satisfied if B is continuously differentisble and
satisfies, for some constant ¢ > 0,

e/(1 = r) < dB(r)/dr < 1/(1 = r),
To prove Theorem II we obscrve first that, if the

range of integration is (1 - 27K, 1 - 2'k'l),

Jf(l-r) exp 2B(r) dr > p=2K=2 exp 2B(1 - 27K)

3

here we have used the facts that B(r) increases with r
and that the length of the range of integration is 2'k'1.

By summing over k = 0, 1, 2,... and using (1l.4.3) we get

2 2% oxp 281 - 275) ¢ oo0.
It 1s easy to infer from this that we may then choose y(k),
a function taking only integer values greater than 2 and

inereasing to infinity as k tends to infinity, so that

2 Y(k)2 2" oxp 2B(1 - 27%) < o, (1.4.5)
and
y(k+1)/y(k) tends to 1. (1.4.6)
Define the sequence of integers n, by
n, = 1, Ny = Y(k)nk (a1l k > 0). (144 7)

In porticular Ny > 2k, and so by (1l.u.1l)

nk+1'1 exp B(1 =~ nk+1'1) < 27K exp B(1 ~ 27K5),

If we multiply by r(k), square and use (1l.,4.5) and (1,4.7)
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we get

an.z exp 2B(l = nk+1-l) < o,
Now put lo'o]
n
f(Z) = Zl Ck Z k (1.’408)

where ¢, = 2 nk.l cxp B(1 = nk+l-l)‘ Since

2 ck2 < oo,
f is regular in the unit circle and it 1s easy to
deduce from Lemma 3 that f is quasi-bounded.
The proof of (l.4.4) depends on the following

lcmma, which is very easy to prove.

LEMMA Yo If s 15 positive for ndl k and sp/sy.q
tends to 0 as k tonds to infinity, then

k-1 0
E::sj = o(sk), :E:j'sj'l = o(sk'l).
1 k+1
Lemma L gives at once
k-1
;ii cyny = o(eyny), (1.4.9)

because

(e, m )/(Cy qypy) = exp (B(1-n,,"1) = B(l-ny,"1) ),

which tends to O by (l.4.2) and (l.4.7). Also

(a0} @®
G n, :E:j
/'\ CJnJ(l - nk-l) J £ 2nk2 Cj/,nj (lclsslo)
j=k+1 K+l

by the inequality (1 = )< "™ ¢ 2(nx)'2, whlch holds
for n> 0 and 0 < x< 1, But

(nk/ck) / (nk+1/°k+l)
= v exp (B(1en,,™0) = B(l-n ,7H) ),

end by (l.4.1) and (1l.4.7) it follows that
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(/o) / (ar/eay) & 7leL) /v,

which tends to O by (1l.4.6). Therefore by (l.4.,10)
and Lemma Y,
00
E cin:(l = n 'l)nj = o(e,n,) (1.4,11)
J '] k - knk 3 [} "’ .
k+1

Now

©
l£rz)l 2 |zv1,. ¢ yn, znjl_

and for z on the cirecle with centre O and radius l-nk'l,
(1.4.9) and (1l.4.11) tell us that this series is
essentially dominated by the term

ey (1 = nk'l)nk

so that on this cirecle

-1
£ (2} > (77 - 0(1)) en - olen).

Hence if k is large enough we have, by definition of Cped

m(l - n,"H,e0 > B(L - mq"H

Since m znd B are increasing functions of r we have

-1 1

then, for 1 = n "< r< 1 - Dypq

m(r,£) > m(l-n LY > B(len,,™H > B,

It follows that (l.4.4) is true for all smell enough

1 - r, and this proves Theorem I1I.

§ 1.5, Theorem II shows Theorem 1 to be sharp for
quasi-bounded functions, but perhaps not for bounded
functions. It secems of some interest that the construction
used in Theorem II, depending as it does on leccunary
power series, is csscntially incapable of showing
Theorem I beste-possible for bounded f. In fact, for

bounded functions with lacunary Taylor series round z=0,
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we hove the following stronger result,

THEOREM III. Suppose that the sequence of
positive integers ny satisfiles, as k tends to infinity,

and that the function (1.4.8) is regular and bounded

in the unit z-cirecle, Then

1

v{- exp T(r,f') dr < oo, (1.5.2)
0

To prove Theorem III we observe that the real and

in a
k
S R

are Fourier serics of bounded functions of o (bibl. 16,

imaginory parts of

page 86), and so by a theorem of Szidon (bibl. 16,
page 139), (1.5.1) implies
Z: |egl < ™. (1.5.3)
(1.5.2) follows from (1.5.3) by a simple argument
involving the use of Lemma 3, and this proves Theorem 111,
(1.5.2) is stronger thon (1.3.1) of course; for
example (1.5.2), but not (1.3.1), would be contradicted
if we had T(r,f') > =log(l-r) = log (-log(l-r)) for all
smell enough 1 - r. There is an analogue of Theorem
11, s follows.
THEOREM IV. Let B(r) be positive and increasin
in (0,1), and satisfy (1,.l,1 1.2
}
exp B(r) dr < o0, (1.5¢4)
"0
Then there exists a function f, regular ond bounded in
the unit z-gircle, having o Tavlor serics of the form
(1,4,8) with n,, /n, tending to infinity, ond
satisfying (1.h,4) for gll sufficlently small 1 - Te
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" The proof 1s very similar to that of Theorem II.
We easily show from (1,5.4) that

> 2 exp B1L -2 < o,
and so we may choose y(k) as in §1.4, taking only integer
values greater than 2 ond tending to infinity with k,
to satisfy

2: (k) 2% exp B(1 - 27°%) ¢ o

and (1,4.6). Define n., ¢, and £(z) as in §1.4,
Then E:ck < ooand so f is bounded; and by (Ll.4,7)
n,1/m, tends to infinity with k. The proof of (1.444%)
proceeds as in §1.4 with minor differences, and
this proves Theorem 1V,

It is now natural to ask: is (1.5.2) true for all
bounded f, even without the gap hypothesis (1.5.1)?
The methods used here are insufficient to answer this,

but I hazard the conjecturc that the answer is "no".

§ 1.6, The last question referred to in §l.1 is,
in effcet, answered in the affirmative by Theorem IV,
We look more closely at this specinl case in the

following theoremn.

THENRWM V, Suppose_ that
‘Ck‘/|Ck+1‘ tends tO 1, (10601)

S bepl < o0, (1.6.2)
and that the sequence of positive integers ny sctisfies
ny41/m tends to infinity, (1.6.3)

(log ny.q) / (log my) tends to 1. (1.6.4)

Define f by (1,4,8), Then f is regular ond bounded in
the unit z=- 1 and (1,1,.kL t .

On the other hand, suppose that Cx satisfies only
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¢ = O0(1) KP (1.6.5)

for some fixed p, that (1.9,1) holds and that (1,6,4)

is false, Define f by (3,4.8)s Then (3,1,4) is false.
The point of the second part is that it shows, for

lacunary series, the essential part ploycd by (1.6.4)
in producing the behaviour (1l.1l.4).

Theorem V is proved by estimates very similar to
those in the proofs of Theorems II and 1V, To prove
the first part we note first that f is a bounded
regular function by (l.6.2). Put

r, = exp (=1/my). (1.6.6)

Then for all k and all rcal a,

ler(ret®) % e hleg|me - 8 - 8y,

vhere k-1 oo
L 5 teyng
S = citn s = c:sjns r .
1 ‘ J' o 2 K1 ' jl j 'k
1l

From (1l.6.1), (1.6.3), (1.6,6) and Lemma Y4 the estimates
SJ_, S2 = O( ‘ck| nk)

follow easily., Foreover from (1.6,1) we get log ¢
= 0(k), and k = o(log nk) from (1.6.3), so that
log ‘ck' = o(log my).
Thus
log |£'(re!® > (1= o(1) log ny
uniformly with respect to a; and noting that

£1(rget® = 0(1)/(1 = r)) = Olny)

by (1.,6.6) and the fact that f is bounded, we get
log |f'(rkei°)l = (1 + o(1)) log n,

uniformly with respect to a. But (bibl, 12, page 249)
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2n
Mr,1/f') = (27%)~t j' log |f'(r01“>| da + 0(1),
0
and so
N(rp,1/f') = (1 + o(1)) log .

From this (1.1.4) follows, because N is an inereansing
function of r and beczuse the expressions
log ny, - log (1l-ry), - log (l‘rk+l)

are all csymptotic to one another as k tends to infinity,
by (1.6.4) and (1.6,6). This proves the first part
of lhearem V,

To prove the second part we suppose that, in
contradiction of (1.6.4), there exist a fixed 6 > 1
and infinitely many k such that

nk+1 > nkoo (1.6.7)

Put t, = exp (-l/nkﬁ) for some (temporarily fixed) g
with 1 < 8 < 0, Then for z on thec cirele with centrc
0 and radius t,, we have by (1.6.5)

( k 00 3
n
£1(z) = 0(1) 52 #Pny + § Pagt I .
U il 3

Tsing (1,6.3) we can show that the first sum on the
r.~ht is
0(1) nk1+e for every € > 0,

end that the second sum is bounded for 211 k for which
(1.6.7) is true. It is easy to conclude that, for
every £ > 0 and all large enough k for which (1l.6.7)
is true,

Nt ,1/8%) < = 7T (1 + &) log (1 = t),

Since p is also artitrary in (1,5) we deduce that
lim inf M(r,1/f')/(-log (1 = 1))
is at most 1/d, which is less than 1. Thus (l,1.4) is
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false, and this completes the proof of Theorem V,

§ 1.7. To end this chapter we show that a method
used in Theorem V suffices to show the accuracy of a
result of Biernacki (bibl, 2, page 101), Biernacki
shows that. if the function f, regulor in the unit z-
circle, satisfies as r tends to 1
lim inf T(r,f)/(-log(l = r)) = ¢,
hen lim sup T(r,f')/T(r,f) £ 1+ 1/c

ct

4s r tends to 1 outside a sct of intervals over which

the _tot~1 varintion of - log (l-r) is finite, We orove

TL.0REM VI. Let ¢ be given (0, finite and positive,
or o). Then there exists f, regular in the unit z=-

gircle and satisfying, =- r tends to 1,
T(r,f) / (= log (ler)) tends to c,

T(r,f')/T(r,f) tends to 1 + 1l/c.

In view of what has gone before, the calculations
involved in the proof of Theorem VI are straightforward
and we omit them. For the case ¢ = 0 we need only
construct, ns in Theorem II, a function f satisfying
T(r,f) = 0(1), T(r,f') tends to infinity. For
finite ¢ > 0 we may take

f(z) = :E: ny 2

for a sequence of integers ny satisfying (1.6.3) and

(1.6.4); while, with the same sequence n,

-
£(z) = ‘L_nkk znk

deals with the case ¢ = oo, This proves Theorem VI,




CHAPTER  TWO

§ 2.1, In this chapter T(r,f) again denotes the
Nevanlinne characteristic of f, but we are now concerned
with functions meromorphic in the open plane, and
espcelally with entire (integral) functions, For
meromorphic f the order p of f 1s defined by

p = 1lim sup (log T(r,f))/logr

as r tends to infinity, which (bibl, 8, page 30)

coincides with the usual definition of the order of f
if £ is entire, When f is entire we define, ns usual,
M(r,f) to be the maximum modulus of f£(z) for z on the

circle with centre 0 and radius r, and f is said to

have perfectly rogular growth if

lim r~P log M(r,f) (2.1,1)

(as r tends to infinity) exists, being finite and
positive, Among tho Cornell Colloquium problems
(bibl, 3, problem 2) is the followings "if f 1s entire
and (2,1,1) exists, does

lim r°P T(r,f) (241,2)

exist?" In other words, if f has perfectly regular
growth in the usual sense, does f also have perfectly
regular growth in the Nevanlinna sense? It is plain
that in considering this question we lose nothing by
taking the value of (2,1,1) to be 1.

From the inequalities

*
(1-k)(1+1) "} log M(kr,f)  T(r,£) € log M(ryf),

wvhich ere true for all k in (0,1) (bibl, 8, page 24),
we deduce easily that, if
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CHAPTER  TWO

§ 2.1. 1In this chapter T(r,f) again denotes the
Nevanlinna characteristic of f, but we are now concerned
with functions meromorphic in the open plane, and
espocially with entire (integral) functions, For
meromorphic £ the gpder p of f 1s defined by

p = 1lim sup (log T(r,t))/log r

as r tends to infinity, which (bibl, 8, page 30)

coincides with the usual definition of the order of f
if £ is entire, When f is entire we define, as usual,
M(r,f) to be the maximum modulus of f£(z) for z on the

circle with centre O and radius r, and f 1s said to

have perfectly regular growth if

lim »r~P log M(r,f) (2,1,1)

(as r tends to infinity) exists, being finite and
positive, Among the Cornell Colloquium problems
(bibl, 3, problem 2) is the followings "if f is entire
and (2,1,1) exists, does

lim r°P T(r,f) (2.1.2)

exist?" In other words, if f has perfectly regular
growth in the usual sense, does f also have perfectly
regular growth in the Nevanlinna sense? It is plain
that in considering this question we lose nothing by
taking the value of (2,1.,1) to be 1.

From the inequalities

+
(1-k) (1+K) "L log M(kcr,£) € T(r,f) € log H(r,f),

which are true for all k in (0,1) (bibl, 8, page 24),
we deduce esasily that, if
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1im 7P log M(r,f) = 1 (2.1.3)
os r tends to infinity, then

A(p) € lim inf r°P T(r,f)

£ 1im sup r"P T(r,f) 5; 1 (2.1.4)

vhere
A(p) = max ( (kP=kP*1)/(1+k) ) for 0 < k < 1.
By considering the value k = exp (=1/p) we find that

A) > (20(14p))”?
for all p > O0; aond more detailed calculations show that
1im A(p) = 1 as p tends to O, (2,1.5)
lim 20p A(p) = 1 as p tends to infinity. (2,1.6)
In this chapter I prove the following theorem,
THEOREM VII. Suppose that O < p < oo. Then there
exista on entire functlon  satisfvine (2.1.3) and,
as r tends to infinity.

lim sup r™P T(r,f) = 1, (2:1.7)
Um inf »°P T(r,f) <&  ¥(p), (2,1,8)

A

shere
¥(p) = (™t sin wp (0 < p< B,

=™ oy

8ince y(p) < 1 this answers "no" in general to the
question raised above; and, with (2,1.5) and (2.1.6),
1t also shows that the lower bound for r™P T(r,f) in
(2.1,4) is roughly of the correct order as regards its

dependenace on ?o

§ 2,2, To prove Theorem VII we need two lemmas,
LEMMA 5. Bupeese that 0 < p < o, and Jet D denete
the angular domain
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bd<argz<d = min (TV ,TT /(2p) ).

Then there exists an entire function g(z) gatisfving
le(z)l < 1 for all z outside D, if p>+ or p=%, (2,2.1)

log gl = rP + 0(log r) (2.2.2)

as r tends to i

log |g(reia)\ < rP cos pa (242,3)

for all reiOL in D with r > 2,

Lemma 5 is, in effect, known., When p is at least %
the lerme is a special ease of a theorem of the present
writer (bibl, 5, Theorem II); we note that (2.2.3),
though not included in the statement of that theorem,
is an easy consequence of Lemma 11 of (bibl,5), When
0 < p < + we make use of the function

e o]
A

wz) = [ | @ mt/P,
1
For this function Wiman (bibl, 15) obtained (even for
0 < p < 1) the asymptotic statements, as r tends to oo,

log W(r) = Treosec Mp. rP + 0©(log r),

log \W(rel®)| < frcosecrip. rP cos pa + 0(log r)
uniformly with respect to a. It is therefore easy to
see that, if g > 0 satisfies

TpP coseec Mp = 1,
then a positive integer N may be chosen so that

0
L

g2 = | \ @+ pz/ul/?)
N
hes the properties (2.,2.2) and (2.2,3).
LEMMA 6, I£ O < p < o, then there exists onentire
function h(z) satisfvine, uniformly with respect to a,

Ihirel®)] < (2 + o(1)) exp (rP) (2.2.4)
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g8 r to t

r, and t, tending to infinity with n such that
|nerpde )l > (1 - o(1)) exp (r.P), (2,2,5)
[nv oM < exp (otP), (2,2,6)

az n tends to infinity.
For the proof of Lemma 6 it is convenient to
introduce temporarily the notations
a = 1/p, (24247)
s, = n} =n(n-1)(n-2)...3.2,1. (2.2,8)

Put
©
s._.
h(z) = )N (e%plz/s 3) P
n=l
©
= n; un(2), say.
When
(g8,.1)% ¢ r & (qsy)d (2.2.9)

the power series 1s essentially dominated, on the
circunference with centre 0 and radius r, by the two
terms u,_1(z) + u,(z), To see this we note first that
if r, the modulus of z, satisfies (2.2.9), then by
(2.2,7) and (2,2,8)

o0 00 \ © "
Bi¢d ]
‘ g uJ(z)’ $ 32.:1 (e8y/84) ¥ & $ +1(e/n)

and 8o

. uyz) = ol (242410)
o+l |
Furthe¥, because (adplr/md)® inoreases with m as long as

nl < pdr, we have, when |z} = r satisfies (2,2.9),

ne2

| ;uj(z)‘ 4 n(eqpql‘/sn..zq)snm2 ’




end this is less than

qs
n (en2) 0-2
because

q q 2q
pir/s, »* < n

by (2.2.7), (2,2.8) and the right-hand inequality of
(2,2.9). Again by the left-hand inequality of (2,2,9),

asp.2 ¢ rP/(n-1),

end so
-2
\ 2;: uj(z)‘ ¢ n (en®)T/(@1)
< nhrp/(n-l) = exp ( (4rPlog n)/(n=1) ).
Hence
n-2
l z;; uj(z)' < exp (o(rP)), (2.2.11)

And now, when r, the modulus of z, satisfies (2.2.9),
we get by (2,2.10) and (2,2.11) '

In(z) = u _4(2) = u (2l < exp (o(zP)), (2.2.12)

which justifies our assertion regarding the esscential
domination by two terms of the power series defining h(z).

For all m we have

(epr/md)® & exp (2P),
and (2.2.4) follows at once from this and (2.2,12),
Put
rn = (asp%

Then r = r, sotisfies (2,2,9), and by (2.2.7) and (2.2.8)

‘un(rnei“)‘ = exp (qs,) = exp (rpP),
loper(rpet ™l = = (elsd/s, 1D B2
Upeplrpe b = wp (1) (e%sp*/spay
asp.] 2rnp/n

= (en) < n = exp (o(ryM)),




-m-
and so (2,2,5) follows easily from (2.2,127.
Similarly if we put

t, = (qsn)q n-%a

then r = t, satisfies (2.2,9), and for |(z| = t,

Iun_l(z)' up.1(ty) < exp (o(tyP)),
lug()l = upty) = o(D).
Hence we get (2.,2.,6) from (2.,2.12), This proves Lemma 6.
§ 2.3, We can now prove Theorem VII, Let g and
h be as in Lemmas 5 and 6, ané put
£(z) = 2%(2) + h(z), (2,3.1)
where the positive integer Q is so chosen that

rde(r)) > 3 exp (xP) (allr > 2)3

such a choice of Q is possible by (2.2,2), and we then
have, by (2-20‘4) and (203.1)’

It > (1 - o(1)) exp (rP).
Moreover by (2.2.1), (2,2.3) and (2.2.k4),
lerel®) < (29 + 2 + o(1)) exp (rP)

uniformly with respect to a. Hence (2.1.3) is true.

Next let & be as in Lemma 5, take any fixed ¢
sotisfying 0 < € < &, and suppese € < Jal < 3. Then
by (2.2.3)

'g(rei“ﬁ < exp (rP cos pe)
for all r > 2. Since cos pe < 1 we have therefore

(rel®)Q g(reia) = o(1) exp (rP).
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Hence if r, is as in Lemma 6, we have by (2,2.5)
and (2.3.1)
[£(rpel®l > (1= o(1)) exp (rP)e
If p > 4 then this same inequality holds for
6 < fal < 1T by (2.2,1), (2.2.5) and (2.3.1), Hence

in any case
T(rp,f) > (2R)7H(2(5=e) + 20T =3)) P = o(1).

Since € > 0 is arbitrarily small, (2,1.7) follows at once
from this and the extreme right-hand inequality of (2.1.4).
Finally, with tn as in Lemma 6,

T(tp,h) = o(tyP)
by (2-2.6); and by (2.2.1) and (2.203)
tye) < v trF.

Hence (bibl. 8, page 1l4) we have by (Z2.3+1)
T(tn,f) < T(tp,g8) + T(tp,h. + 0(log ty)

< y(p) tyP + ol(tpP).
This proves (2,1.8) and so completes the proof

of Theorem VII,

§ 2.4, When I had finished the above work I weas
informed by Professor W. K. Haymen that I had been
slightly anticipated by Professor A. A. G:ldberg
in answering "no" to the Cornell Colloquium questio::
stated in §2.1, I have not an exact reference to
Goldberg's paper. Instead of Lemmz 5 he makes use
of properties of the Mittag-Leffler function

00

E 22/ (1 + n/p).

n=20
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Moreover he uses a device different from the rather
sharp Lemma 6, leading to a weaker result than (2,1.7).
It should be mentioned that Goldberg clso constructed
an example to show that, conversely, the existence of
(2,1,2) does not imply the existence of (2.1.1).
Professor Goldberg kindly called my ettention,
in a letter, to a paper of Paley (bibl., 10; for the
exact reference I am indebted to Professor Hayman)
where it is shown that there are entire functions f
satisfying, as r tends to infinity,

lim inf T(r,f)/log M(r,f) =0,
and where it is also conjectured that, in general,
lim sup T(r,f)/log M(r,f) 3 ¥v{(p)

with v(p) as in Theorem VII, Paley states that, in
fact, this conjecture is known to be truc for p < #

and for p = *; the case p > % remains open.




CHAPTER  THREE

§ 3.1, In this chapter I turn my attentlon to two
problems about infinite series,
Let the L-integrable function f(x), with period 2 7T,
have the Fourier series
®

5&1 (ak cos mx + by sin nkx) (3.1.1)

where thiz seguence of positive integers e satisfies
lim inf nyggq/me > 1 (3.1.2)
as k terds to infinit;. Sun-~ose that, for some fixed

Xo and 0 < a1,
£lxg +t) - £(x) = 0()|t}° (3.1.3)

as t tends to zero, Tomic (bibl, 13) has shown that we
then have

ak, bk = O(l) nk-a/(2+a)- (30101")

1 have previously (bibl, 6) shown that the hypothesis
(3.1.3), u._n.iigzzl;x_ign X, Qn o set of positive measure,
is enough to ensure the stronger conclusion

8,y b, = 0(1) n "%
and I show here that Tomié's result can be improved to
the following,

THEOREM VIII. Let the L-integrable function f(x),
with period 2 7% , have the Fourjer series (3,1,1)
satisfying (3,1.2), and suppoge that (3a1.3) holds
for gome x, and o > O. Ihen

ay b = 0(1) (nk'l log m)® (3.1.5)
as k tends %o infinity.

This, and Tomic's result, are related to theorems

due to Noble (bibl, 9); and indeed Tomic's method of




-23 -

proving (3.1.4) 1is similar in some respects to that
used by Noble. The point of this and the next section
is that a dﬂg%t application of Noble's method is enough
to prove Theorem VIII,

It would be interesting to know whether the term
log ny in (3.1.5) can be suppressed, If this could be
done it would be an improvement, not only on Theorem VIII,

but also on Theorem I of (bibl. 6),

§ 3.2, In proving Theorem VIII we assume X, = 03
there is no loss of generality in this,
Essentially, Noble proved

LEMMA 7. Let m be a positive integer gnd

0 <5< jV. Ihen there exists a trigonometric polvnomigl
m
T(x,m,d) = 1+ 2:% ty(m) cos Jx (3.2.1)
J:
such that
|7Cxm,3) < 4370 (all x), (3.2.2)

|T(xsmyd) < A2m26'1 exp (=Adm)
(® ¢ Ix] ¢ 2W=D)

The hypothesis (3,1.2) means that n, grows so

)
g, (3.2.3)

rapidly that the constant ¢ > O may be chosen so small
that, if we let m. be the integer part of eny then

mk < min (nk - nk_l, nk.,.l - nk) (3;2.10-)
for all large enough k, Next, put

b = C mk'l log m,

where the constant C is chosen so large that

mk25k-l exXp (-A35kmk) = 0(1) mk-u; (30 2. 5)
such a choice of C is possible because the left-hand side
of (302.5) is 3

- A.C
my, 3" /(clog mk).
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Let T(x,my,3)) be as in Lemma 73 then by (3.2.1)
and (3.2.4) we have, for all sufficiently large k,

(1}
& = e j (£(x)=£(0)) T(xymg,d,) cos mx 3x.
-
In the range =3y < x < d, the integrand is

o1y 5, "t

by (3¢1.3) (with x, = 0) and (3,2.2), and so the integral

over this range is

a
0(1) ak .
By (3.2,3) w.ad (3,2.%) the remai-der of the integral is

o mK';.

Hence by deiinitinn ol my and b, w get the estimate
(3.1.5) for ag. Since a cimilar argument is available

for by, this proves Theorem VIII,

§ 3,3, In the case a = 1 Theorem VIII provides us,
of course, with a very wide class of continuous
nowherr: -differentiable functions, This may be worth
looking at more clousely, since a weaker method ===
making use of a simpler polynomial than Noble's (3.2.1)
-== gives a construction which might easily be used in

the class-room, In fact, put

R(x,m) = cosZ® ix.
it is easy to prove by induction that R takes the form
n

R(xym) = ro(m) + Z_—— rj(m) cos Jx;

that
JR(x,m)l ¢ 1 (all x and m),

IR(xym)l < exp (-mbz) (0 < T3 ¢ |x| ¢T),
and
ro(m) > Ay m'*




wheredAl+ is a positive =bsolute constant, The use of R
instead of T in our argument, with o = 1, leads to the

estimate

ae = 0L mt (3,2 + exp (m 5, 2))

provided (3.2.4) is trues In particular, if we take
nk = 2k, mk=2k-2, §k2 = k2 22-k’

we get
a = O(1) k? 273K,
Thus, for instance, the function
®
\-*—
£(x) = £__ k™2 Los 2K x
k=1

is a continuous nowherc-differentiable function,

§ 3e4. I prove, finally, a theorem on rearrangement

of infinite serles, Let

P1s Poy p3,--- (3ele1)
be a (fixed) permutation of the integers 1, 2, 3,..4,
and let

n

a—

s(n) =Zl..ak, a(n) = 2—a (344.2)

Pk

H'\/l:!

for a (variable) real or complex series Z ays Agnew
(bibl, 1) has shown ti:i the existence of lim s(n)
implies lim a(n) = lim s(n) if, and only if, the
permutation (3.4.1) has the following propertys there
is an integer N such that for each n = 1,2,5,.., the set
(P1s Py eesy Pp) is the union of at most N blocks of
consecutive intc ars,

It seems now natural to ask the questions are there
permutations (3.4,1) such that 1lim a(n) exists whenever
1im s(n) exists (but *hese limits are perhaps not equal)?
The following theorem answers "no" to t!is question,

by showing that if a given recarrangement preserves the
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convergence of every convergent serlcs, then it preserves
the sum of every convergenl seric:.
THEOREM IX. Suppose that therg oxist
complex scries 2:_ak such that

lim s(n) = s, 1lim o(n) = a # s,

Then there exlsts a convergent series 2: bk such that
z:-bpk is divergent.

In the proof of Theorem IX there is ::0 loss of
generality in assuming that the sy are all renl and
that o > s. Let
a=-s5=3>0, (3e4.3)

and choose sequences of positive integers iy, Ty By

and Yh as followss

Ny = 13 (3ekols)
ry > 1 so that s(ry) < s+ 33 (3:4.5)
Bl > rl so that O-(Bl) >a- 6, (30)4-06)

(1,2,...,1'1)(:(pl,pz,.u,yﬁl); (30]'0'07)
Yl = maX pk for K = 1y 2y eeey Bl; (301'0'08)

'nd in general, for m = 2, 3, s

Np > Yp.1 SO that Is-s(n)\(m’3 for all m>Nj; (3.4.9)

r, > N, so that s(ry) < s + 03 (3.4430)
Bm > rm so that Q(ﬁm) >a- 5’ (3!‘4'031)

(1,2,...,rm)c (pl,pz,ooo,pﬂm); (3.‘4‘.12)
Ym T max pk for k = l, 2, seey Bmo (3.‘4-.13)

For m = 1, 2, 3y¢s. put
bk = ma, (k = Nm, Nm+1,.-o, Nm+1.1)' (3014-011'0')

From (3.4.,9) and the General Frinciple of Convergence
it is a simple matter to verify that the series‘z: bk

is convergent,

Define s'(n), a'(n) by (3.4.2) with ax, ap,
replaced by by, bpk respectively. It is clear that
(3elioli)y (3ehe5)yesey(3ekel3) define sequences of




positive integers with the property thet, for all m,
the set of integers

(pl,pg,.oo’pﬁm) - (1,2,...,rm)
is defined and 1s a subset of the set of integers

(Mg y N+ 1y 0 00y N3 =16

Thus by (3.4.14),

a'(By) = s'(ry) = m (alBy) = s(ry)),
whence by (3eh4e3), (3:4,10) and (344.12),

a'(Bp) = s'(ry) > md,

Since lim s'(rp) exists, it follows at once that
lim a'(B,) = ®, and so 2 by, is divergent. This

proves Theorem IX,
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